

KWR Water Research Institute

- in Nieuwegein, The Netherlands
- shareholders: 10 Dutch and 1 Flemish water utilities
- ~180 employees, ~135 researchers
- covering the full water cycle
- joint research programs (BTO, DPWE), EU funded research projects, consulting projects,
 ...
- participating in many international networks and collaborations
- "Bridging science to practice"

\sim

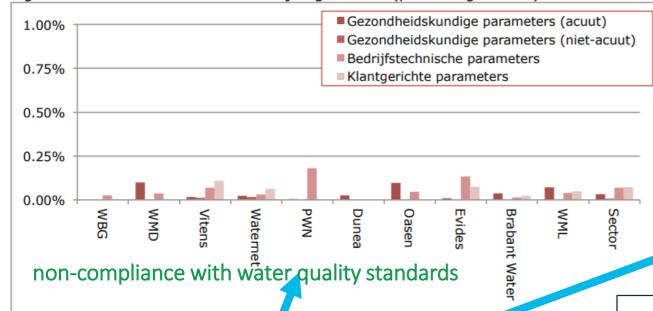
Drinking water in the Netherlands

Topics:

- 1. The Benchmark (drinking water data & policy)
- 2. Non-Revenue Water (drinking water data & decision making)
- 3. City Blueprint (urban water data & policy)
- 4. Uncertainty in data

Benchmark of Dutch drinking water utilities

- comparison of water utilities' performance to improve efficiency, increase transparancy
- voluntary benchmark since 1997 -> 21% improvement (according to Vewin)
- included in the Drinking Water Law in 2006-2007
- parameters included:
 - water quality
 - quality of service
 - environmental aspects
 - cost efficiency, R&D, investments



https://www.ilent.nl/binaries/ilt/documenten/rapporten/2019/3/08/protocol-prestatievergelijking-drinkwaterbedrijven-2019/Protocol+prestatievergelijking+drinkwaterbedrijven+2019.pdf

Resultaat

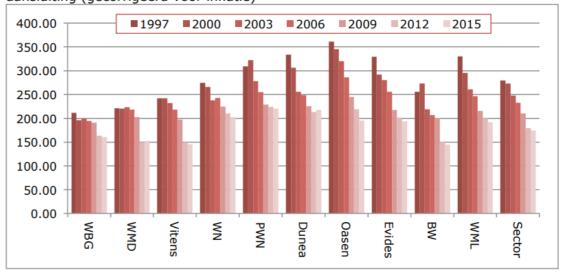
Figuur 2.3: Gemeten normoverschrijdingen 2015 (percentage totaal)

- water quality
- quality of service
- environmental aspects
- cost efficiency, R&D, investments

We'll get back to this aspect.

Resultaat

interruptions of supply per connection


Tabel 3.2: Leveringsonderbreking per administratieve aansluiting per jaar (in minuten en seconden)

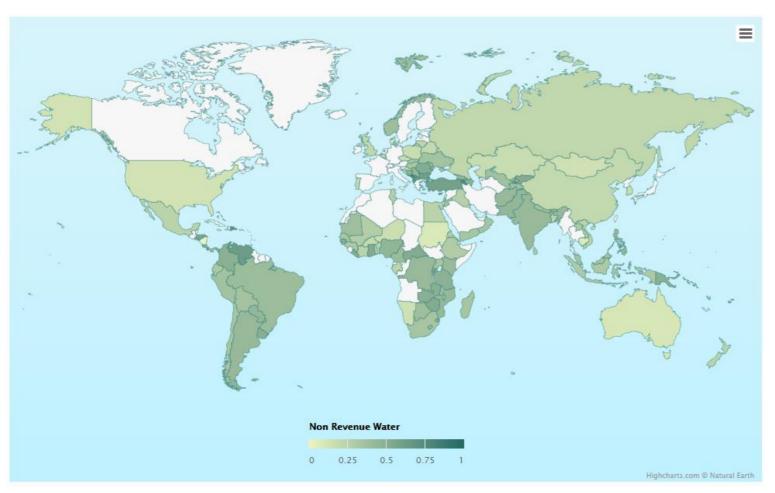
Drink-water- bedrijf	Door Onderhoud	Door storingen	Totaal	
WBG	10:49	5:21	16:10	
WMD	10:06	6:28	16:34	
Vitens	5:23	8:28	13:51	
Waternet	14:38	3:10	17:48	
PWN	10:16	6:39	16:55	
Dunea	9:58	1:26	11:24	
Oasen	13:29	3:21	16:50	
Evides	11:31	5:07	16:38	
Brabant Water	9:50	7:58	17:48	
WML	7:45	8:43	16:28	
Sector	9:01	6:33	15:34	

Door storingen veroorzaakt door derden				
	1:12			
	0:39			
	1:07			
·	0:51			
	1:22			
	0:07			
	0:50			
	0:31			
	0:39			
	0:32			
·	0:50			

Resultaat total costs of drinking water supply per connection

Figuur 5.4: Ontwikkeling totale kosten drinkwater (€) per administratieve aansluiting (gecorrigeerd voor inflatie)

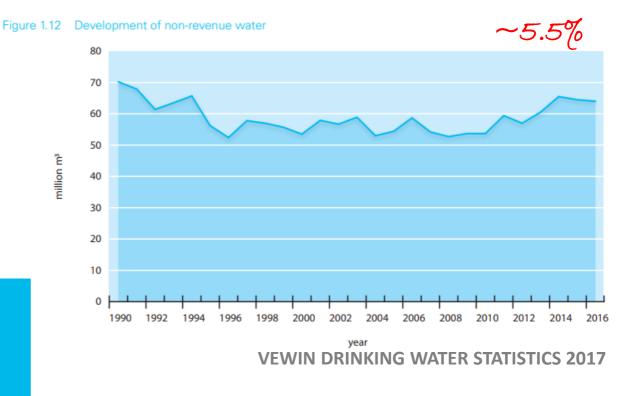
Benchmark outcome


- Water utilities are sensitive to their ranking in the benchmark
 => drive to improve costs/efficiency and performance
- Risk of too much focus on the financial aspects

 (https://www.vewin.nl/nieuws/paginas/Column_Doelmatigheid_en_kwaliteit_1132.aspx?source=%2fnieuws%2fPaginas%2fdefault.aspx)
- 1. Initiative from the sector turned into policy
- 2. Data at the basis of improvements in terms of efficiency and performance

Non Revenue Water reduction

https://database.ib-net.org/Reports/Indicators/HeatMap?itemId=27


KWR

NRW in The Netherlands

- leakage
- flushing
- unbilled water
- measuring issues

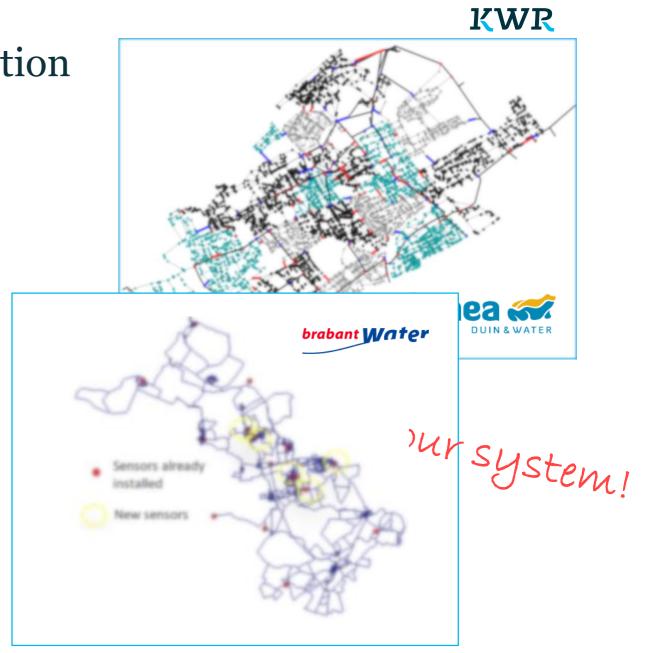
How come?

- Rolls Royce approach?
- flat topography, low pressures
- soil stability (well, not everywhere)
- careful design, planning, and asset management?
 - publicly owned?

But still aiming for a further reduction, using a data driven approach...

 \sim

The role of data in NRW reduction


Flow and/or pressure data measured at multiple locations in drinking water networks + appropriate algorithms/tools -> detection, localization, prioritization, fixing of leaks.

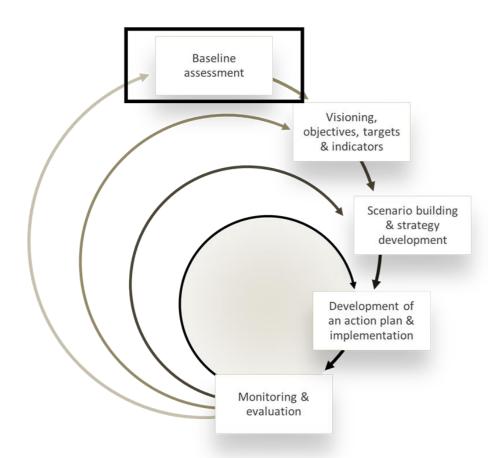
But there is a deeper layer!

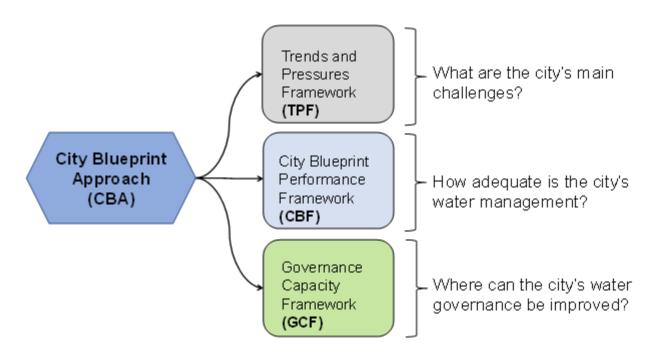
How and where to measure flow and pressure? Numerical optimization tools help to answer this question - get better performance for a smaller investment.

And they need data as well!

- network
- demand patterns

City Blueprint (very briefly)





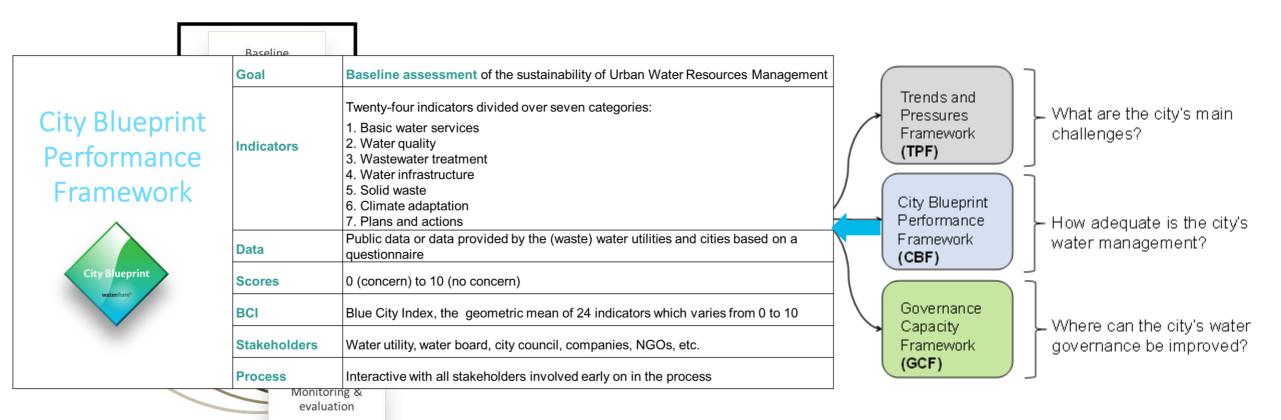
KWR watershare®

Stef Koop

Kees van Leeuwen

More information: https://www.watershare.eu/communities/resilient-urban-water-management/

City Blueprint (very briefly)



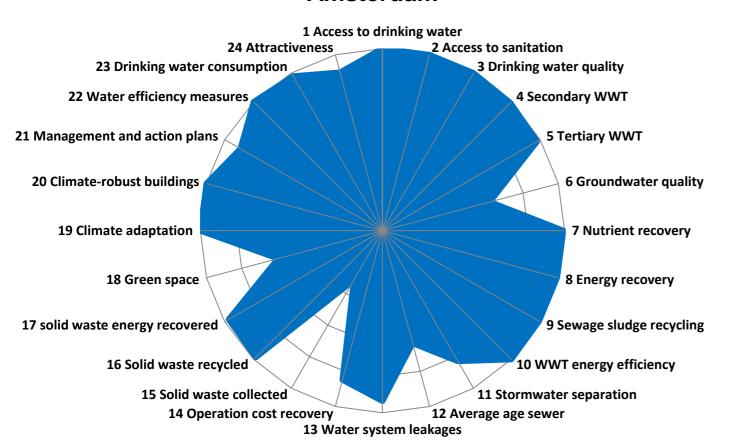
KWR watershare®

Stef Koop

Kees van Leeuwen

More information: https://www.watershare.eu/communities/resilient-urban-water-management/

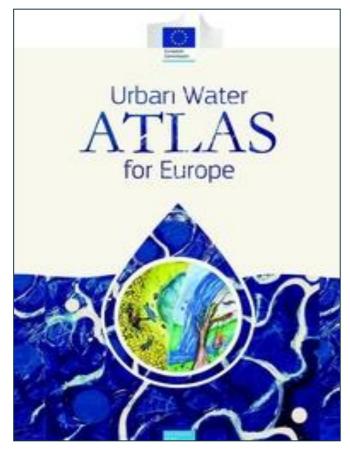
City Blueprint (very briefly)



Stef Koop Kees van Leeuwen

Amsterdam

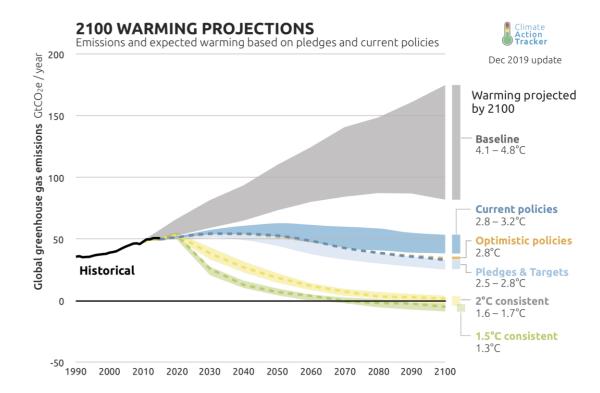
	Goal	Baseline assessment of the sustainability of Urban Water Resources Management
City Blueprint Performance Framework Gty Blueprint	Indicators	Twenty-four indicators divided over seven categories: 1. Basic water services 2. Water quality 3. Wastewater treatment 4. Water infrastructure 5. Solid waste 6. Climate adaptation 7. Plans and actions
	Data	Public data or data provided by the (waste) water utilities and cities based on a questionnaire
	Scores	0 (concern) to 10 (no concern)
	BCI	Blue City Index, the geometric mean of 24 indicators which varies from 0 to 10
	Stakeholders	Water utility, water board, city council, companies, NGOs, etc.
	Process	Interactive with all stakeholders involved early on in the process



\sim

The Urban Water Atlas for Europe

Awareness for water!

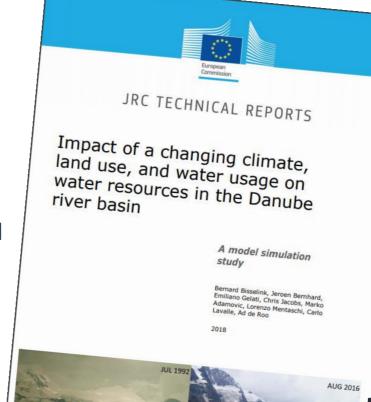


KWR

Uncertainty

Type	examples of sources	typical ways	s of handling
unpredictability	unpredictable expre of behavior such as development of polisystems chaotic processes in complex systems	the tical CD CD AB AB C	use of scenarios with a plausible range with a clear indication of these and assumptions, limitations and subjective judgements ensembles of model simulations
structural uncertainty	inadequate models, frameworks or struc		clear specification of assumptions and system definitions
	ambiguous delimitat definitions	tions or	comparison of models with observations for a wide range of conditions
	misrepresentation o of relevant processe relationships	- I III I	assessment of maturity of the underlying science
value uncertainty	15378268507155 2568210881.0223 23586921322992 9927349122412		analysis of statistical properties of sets of values (observations, model results, etc.)
	### unrepresentative data	A	hierarchical statistical tests
	space		comparison of models with observations

- Data and models
- Understanding of uncertainty in them
- Efficiency and robust/resilient design
- Adaptive decision making



Conclusions & Looking ahead

Illustrations of how data and models are essential for informed decision and policy making on any level - know your system!

Looking ahead means dealing with (deep) uncertainty

- Data and models
- Understanding of uncertainty in them
- Efficiency and robust/resilient design
- Adaptive decision making

KWR

Groningenhaven 7 3433 PE Nieuwegein The Netherlands

T+31 (0)30 60 69 511

E info@kwrwater.nl

www.kwrwater.nl

Dr. Peter van Thienen peter.van.thienen@kwrwater.nl +31 30 6069 602

~ Colofon

KWR | October 2020

Author

Peter van Thienen

Conference

- Danube Water Forum
- Online event
- October 28, 2020

Distribution

A PDF of this presentation is shared with the Forum participants.