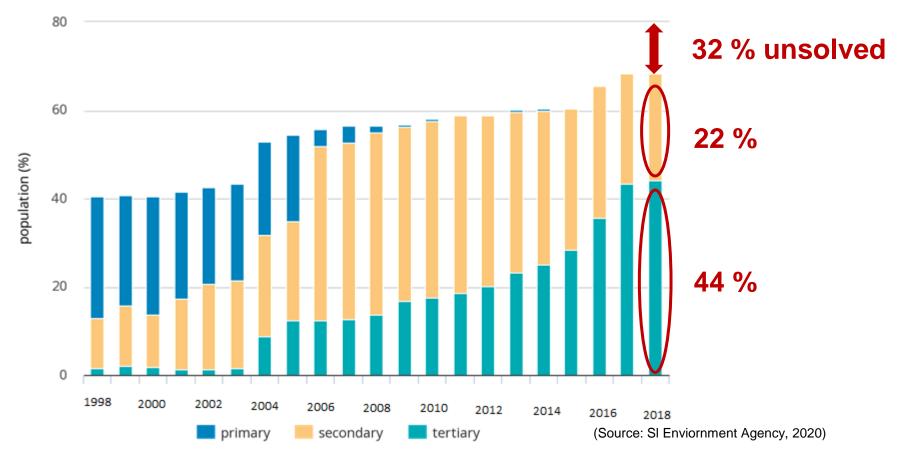




LIMNOS d. o. o. Podjetje za aplikativno ekologijo Požarnice 41 1351 Brezovica pri Ljubljani info@limnos.si www.limnos.si Poslovna enota: Podlimbarskega 31 1000 Ljubljana T +386 1 505 74 72

# CONSTRUCTED WETLANDS IN SLOVENIA

# Anja Potokar


**BSc Water Management and Municipal Engineering** 



RWWT WORKSHOP, January 20<sup>th</sup> 2021 Technical solutions and developments in rural wastewater management



# Wastewater treatment in Slovenia



#### 1.533 agglomerations

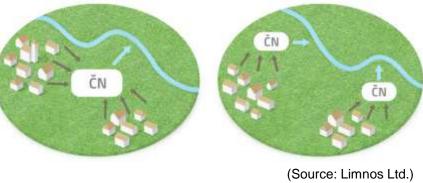
- 123 agglomerations > 2.000 PE
- 1.410 agglomerations < 2.000 PE 53 % REMAINS UNSOLVED 254.806 PE</li>

Areas outside agglomerations – 81 % REMAINS UNSOLVED

# Wastewater treatment in Slovenia

#### A dispersed settlement pattern

- 44 % of inhabitants live in settlements < 1000 people
- 61 % of inhabitants live in settlements < 5.000 people</li>




(Source: Google)

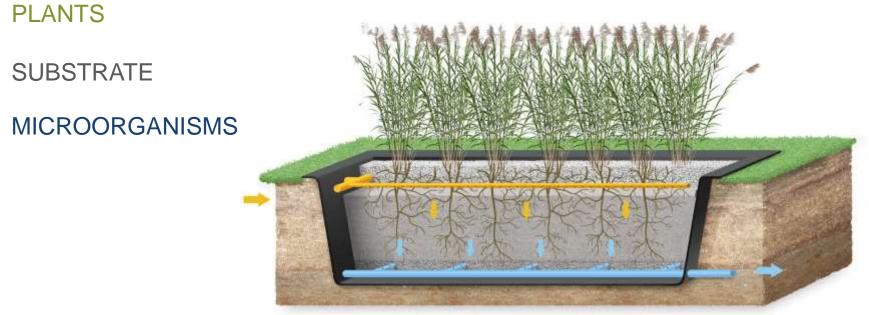
Typical Slovenian countryside

(Source: SI Statistical office, 2020)

#### Centralized vs. Decentralized system






**Constructed wetlands?** 





# **NBS for wastewater treatment**

#### **CONSTRUCTED WETLANDS (CW)**



(Source: Limnos Ltd.)

The CW imitates nature's self-cleaning capacities to purify water.



# **NBS for wastewater treatment**

## **CONSTRUCTED WETLANDS TYPES**

- CW with surface flow
- CW with subsurface flow (horizontal, vertical)
  - Intensified wetlands

# • PRIMARY TREATMENT:

- Screens
- Sedimentation tank

# TREATMENT PROCESSES

- Filtration bed
- Treatment bed
- Polishing bed
- Additional treatment units

INFLOW SEDIMENTATION TANK CW with

vertical flow

(Source: Limnos Ltd.)

EFFLUENT

# 67

- Low costs of operation and maintenance
- Passive technology
- Simple construction
- High treatment efficiency
- Landscape attractiveness
- High buffering capacity
- CO2 uptake

- Large area requirements
- Clogging of the system
- Less control on the treatment processes



# First CW in Slovenia (1991)

#### PONIKVA (350 PE)



# CW for households (WWTP < 50 PE)





5 PE

## 10 PE



(Source: Limnos Ltd.)

# **CW for small settlements**

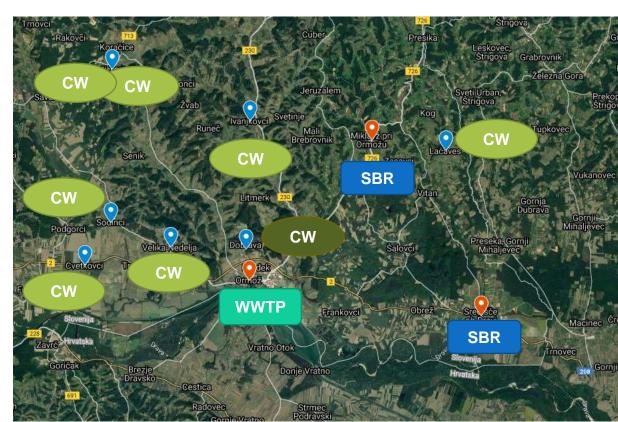


**Experience from Slovenia** 



Bazga (500 PE)

(Source: Limnos Ltd.)




# Holistic approach to wastewater management

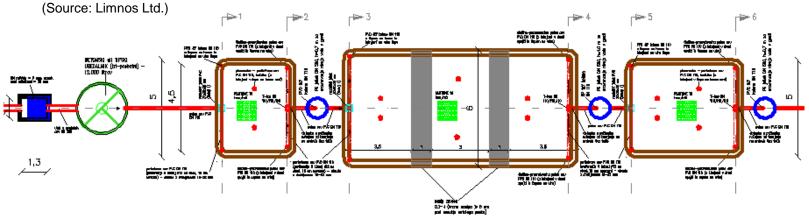
- Municipality of Ormož in north east Slovenia
- 7 CWs (in total for 3.950 PE)
- 1 CW for landfill leachate
- 2 SBR (in total for 2.450 PE)
- 1 central WWTP (4000 PE  $\rightarrow$  8000 PE)



(Source: Limnos Ltd.)






# **Municipality – local community collaboration**

Municipality of Sevnica and local community Kamenica



## CW for 49 PE

- Coarse screens
- Sedimentation tank
- Filtration bed
- Treatment bed
- Polishing bed
- Effluent to recipient







# **CW for food processing industry (industrial WWTP)**

Gosad



(Source: Limnos Ltd.)



(Source: Limnos Ltd.)



(Source: Ahac)







# **CW for agricultural run-off**



(Source: Limnos Ltd.)

System efficiency:

- COD, inflow=16.610 mg/l, outflow=1.924 mg/l
- NH<sub>4</sub><sup>+</sup>-N, inflow=81 mg/l, outflow=21 mg/l
- PO4<sup>3-</sup>\_P, inflow=73 mg/l, outflow= 15 mg/l

# CW for Alpine/mountain cottages and camping sites



Mountain Razor (70 PE)

- 1.300 m
- Seasonal loadings

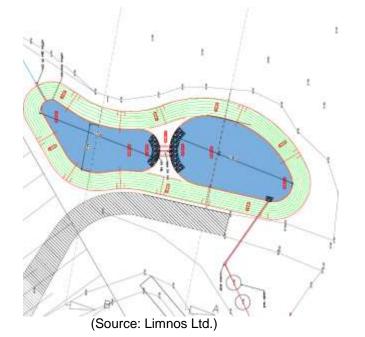


Mojstrana (for 15 tents)

(Source: Limnos Ltd.)



 $Vršič~(1.630~m)^{\text{(Source: Limnos Ltd.)}}$ 




# **CW for landfill leachate**

#### Landfill Bukovžlak, Celje



(Source: Vodar Ltd.)



#### Landfill Devoll, Albania





# **Closing the loops: resource recovery**

## Kaštelir Labinci, Croatia (1.900 PE)



(Source: Limnos Ltd.)

(Source: Hidroprojekt-ing)



# **Construction I.**





# **Construction II.**



# **Operation and maintenance**

#### **Regular maintenance:**

- Emptying sludge from sedimentation tank
  - · Few times per year or
  - min. once per 3 years
- Visual inspections
  - Once per week
- Reed mowing
  - Once per year

#### If necessary:

- Pump service and replacement only if pump needed
- Replacement of substrate only if clogged

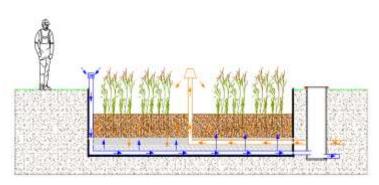
#### Lifespan:

• 30 years or more










# Sludge drying reed beds (SDRBs)

- Reliable sustainable technology for sludge drying and stabilization
- Microbial mineralization of organic matter volume reduction







<sup>(</sup>Source: Limnos Ltd.)



(Source: Limnos Ltd.)

Sludge drying reed beds in Mojkovac (2.500 PE), Montenegro

#### Scheme of SDRBs

# Why SDRBs?

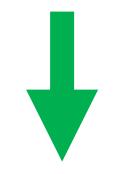
#### **EFFECTIVE VOLUME REDUCTION**

- The final product contains from 25 to 40% of dry matter
- Volume reduction by 95 %
- Due to mineralization up to 40 % less organic matter

#### Lower volume means lower disposal costs!

#### **NO CHEMICALS**

· Without the use of floccultants for sludge thickening


#### **ENERGY SAVINGS**

- Reduction in electrical consumption form 20 to 60 %
- Consumption related only to pumps and control system

#### **BIOSOLIDS USE**

• The Sewage Sludge Directive 86/278/EEC seeks to encourage the use of sewage sludge in agriculture

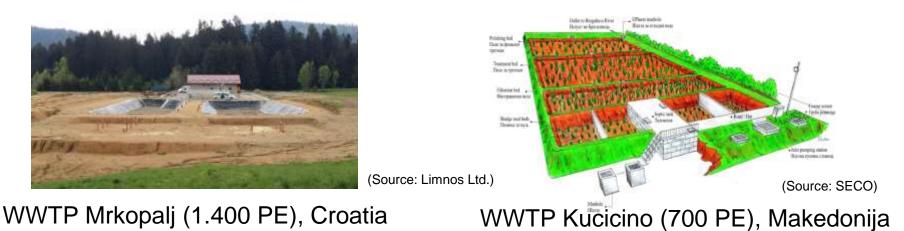
#### Phosphorous is a limited resource!







(Source: Melbourne Water)


# Small WWTP + Sludg drying reed beds

- Heavy metals in sludge within re-use limits (confirmed by analysis)
- Long-term sludge solution
- Sludge transport to the central WWTP is not needed
- An economically acceptable solution



(Source: Limnos Ltd.)

#### WWTP Karbinci (1.100 PE), Makedonija





# **Conclusions**

- Robust and simple technology
- Investment comparable to other technologies
- Energy efficient systems savings in the long run
- Green area an aesthetic element supporting ecosystem services