

Treatment technologies and their performance

Institute of Sanitary Engineering and Water Pollution Control

Rural Wastewater Treatment Workshop

19+20 January 2021

University of Natural Resources and Life Sciences, Vienna Department of

Water, Atmosphere, and Environment

Content

- Introduction
- Overview of technological solutions
- Performance of small WWTPs < 50 PE
 - Case study Upper Austria
- Other possible solutions
- Summary

University of Natural Resources and Life Sciences, Vienna Department of Water, Atmosphere, and Environment

Introduction

Small WWTPs – characteristics / requirements

Characteristics

- highly fluctuating wastewater flows, and high concentrations of the wastewater constituents with high fluctuations.
- additionally only few trained personal is available to operate wastewater treatment plants

→ General requirements for small WWTPs

- simplicity of the technology,
- simple operation and maintenance,
- high robustness,
- large volume, to buffer the high fluctuations of flow and concentrations,
- high stability, and
- low sludge production

Overview of technological solutions

For secondary treatment

Intensive treatment systems

- Technologies with fixed biomass
 - Trickling filter
 - **Rotating biological contactor**
 - Soil filter
 - etc.
- Technologies with suspended biomass
 - Conventional activated sludge
 - **SBR** (Sequencing Batch Reactor)
 - **MBR** (Membrane BioReactor)
 - etc.

Extensive treatment systems

- Treatment wetlands
- Waste stabilization ponds

University of Natural Resources and Life Sciences. Vienna

Department of

Water, Atmosphere, and Environment

Performance of small WWTPs < 50 PE

Wastewater treatment in Austria - Basic data

Capacity (PE)	Number of WWTPs	%	Design load (million PE)	%
51-500	1'040	54	0.18	1
501-5'000	505	26	1.13	5
5'001-50'000	316	16	6.10	28
>50'000	66	4	14.06	66
Total > 50 PE	1'927	100	21.47	100
≤ 50 PE	ca. 27'500	-	0.26	

95.2 % of population connected to WWTPs > 50 PE

Wastewater treatment plants and design load with capacity > 50 PE (ÖWAV, 2019)

ÖWAV (2019): Branchenbild der österreichischen Abwasserwirtschaft 2020 (Sector report of Austrian wastewater management 2020). Österreichischer Wasser- und Abfallwirtschaftsverband (ÖWAV), Vienna, Austria [in German]; https://www.oewav.at/Publikationen?current=385139&mode=form

Performance of small WWTPs < 50 PE

Case study Upper Austria

Data provided by the government of Upper Austria

- List of all small WWTPs currently in operation
- Measured data from external monitoring from the period 2009-2018

WWTPs have been grouped according on the main treatment step

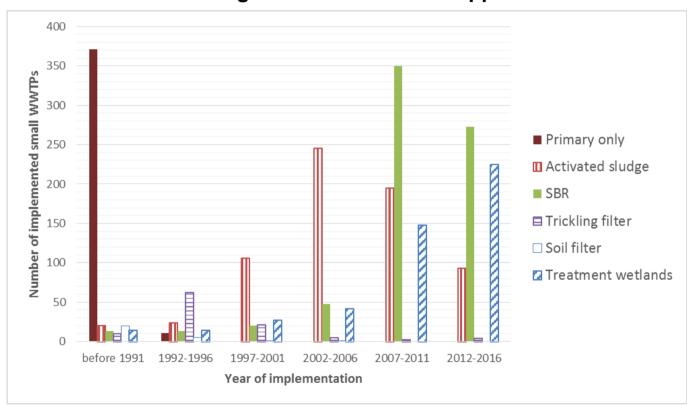
- Conventional activated sludge (CAS)
- Sequencing batch reactors (SBR)
- Vertical flow wetlands (VF wetland)
- Trickling filter

- Rotating biological contactor (RBC)
- Membrane bioreactor (MBR)
- Soil filter, i.e. Bodenkörperfilter

University of Natural Resources and Life Sciences, Vienna


Department of

Water, Atmosphere, and Environment


Performance of small WWTPs < 50 PE

Number of small WWTPs in Upper Austria

Technology	# 2016
SBR	702
CAS	646
VF wetland	475
Primary treatment only	381
Trickling filter	100
RBC	37
MBR	26
Soil filter	27
Unknown	4
Total	2'398

Year of commissioning of small WWTPs in Upper Austria

University of Natural Resources and Life Sciences. Vienna

Department of Water, Atmosphere, and Environment

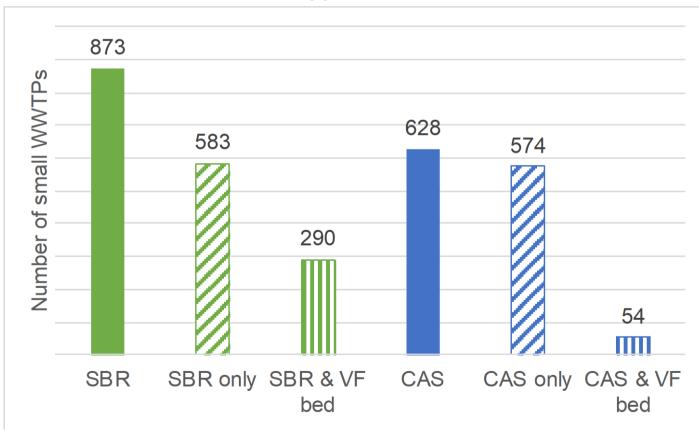
Langergraber, G., Weissenbacher, N. (2017): Survey on number and size distribution of TWs in Austria. Water Sci Technol 75(10), 2309-2315.

Number of small WWTPs in Upper Austria

Technology	# 2016	# 2019	Difference
SBR	702	873	171
CAS	646	628	-18
VF wetland	475	535	60
Primary treatment only	381	302	-79
Trickling filter	100	97	-3
RBC	37	37	0
MBR	26	26	0
Soil filter	27	27	0
Unknown	4	1	-3
Total	2'398	2'526	128

University of Natural Resources and Life Sciences, Vienna

Department of Water, Atmosphere, and Environment



University of Natural Resources and Life Sciences, Vienna

Department of Water, Atmosphere, and Environment

Performance of small WWTPs < 50 PE

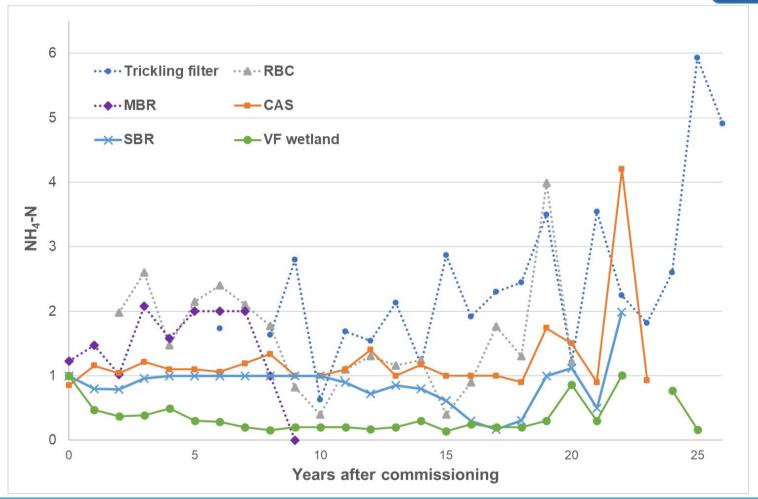
Number of small WWTPs in Upper Austria

University of Natural Resources and

Performance of small WWTPs < 50 PE

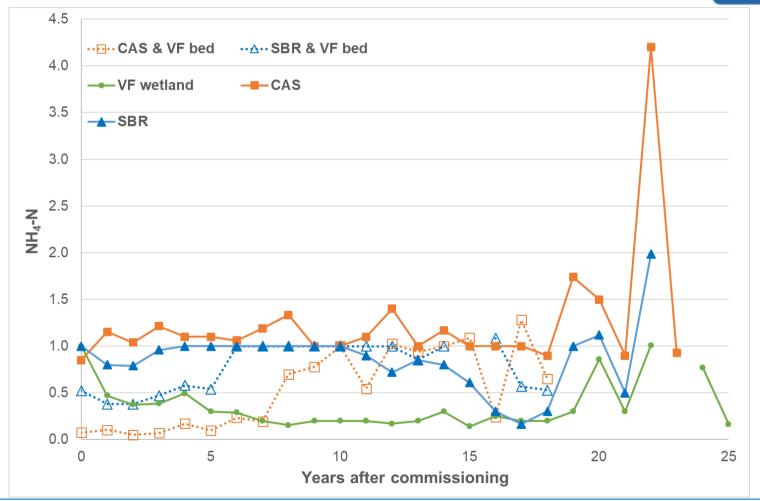
Case study Upper Austria

Life Sciences, Vienna Department of Water, Atmosphere, and Environment


COD	SBR	SBR & VF wetland	CAS	CAS & VF wetland	VF wetland	Trickling filter	RBC	MBR	Soil filter	All data
Number of small WWTPs []	493	252	540	52	491	85	36	25	7	1'981
Number of values []	3'365	1'568	4'406	422	3'245	703	283	185	54	14'231
Values above threshold []	48	7	53	1	4	11	4	0	0	128
[%]	1.4	0.4	1.2	0.2	0.1	1.6	1.4	0.0	0.0	0.9
Median [mg/l]	37	24	35	24	21	44	43	27	33	31
Mean [mg/l]	42	28	41	40	25	47	47	31	34	36
Standard deviation [mg/l]	25	16	38	249	14	22	21	15	14	51
[3]										
NH4-N	SBR	SBR & VF wetland	CAS	CAS & VF wetland	VF wetland	Trickling filter	RBC	MBR	Soil filter	All data
	SBR 493		CAS 540	CAS & VF			RBC 36	MBR		All data 1'981
NH4-N		wetland		CAS & VF wetland	wetland	filter			filter	
NH4-N Number of small WWTPs []	493	wetland 252	540	CAS & VF wetland	wetland 491	filter 85	36	25	filter 7	1'981
NH4-N Number of small WWTPs [] Number of values []	493 3'347 72	252 1'565	540 4'382	CAS & VF wetland 52 418	wetland 491 3'199	85 689	36 282	25 184	7 54	1'981 14'120
NH4-N Number of small WWTPs [] Number of values [] Values above threshold []	493 3'347 72 2.2	252 1'565 13	540 4'382 137	CAS & VF wetland 52 418 9	wetland 491 3'199 48	85 689 42	36 282 17	25 184 6	7 54 6	1'981 14'120 350
NH4-N Number of small WWTPs [] Number of values [] Values above threshold [] [%]	493 3'347 72 2.2 1.00	wetland 252 1'565 13 0.8	540 4'382 137 3.1	CAS & VF wetland 52 418 9 2.2	wetland 491 3'199 48 1.5	85 689 42 6.1	36 282 17 6.0	25 184 6 3.3	7 54 6 11.1	1'981 14'120 350 2.5

Engstler, E., Kerschbaumer, D., Langergraber, G. (2019): Evaluierung von Kleinkläranlagen anhand der Fremdüberwachungsdaten. Wiener Mitteilungen 251, B1-B13.

Performance related to the age of the plant



Performance related to the age of the plant

Other possible solutions

Resources-oriented sanitation systems

- Wastewater as resource: e.g. treated water, nutrients, organic nutrients, heat
- Separate collection of wastewater streams, i.e.
 - separation of blackwater and greywater
 - good opportunity for reusing treated greywater
 - more simple technologies for treatment of greywater
 - source-separated urine
 - production of NPK fertilizer
- → If owners of WWTPs have an additional benefit besides treatment of wastewater, it is more likely that the WWTPs are operated well

Summary

- All technologies comply with the required threshold values
- WWTPs including a VF bed show lower median values and less measurement values exceeding the respective threshold limits
- Significant changes of the treatment performance over the operation time cannot be proven in any technology
- WWTPs including a VF bed show less fluctuations of the median effluent concentrations
- Proper operation, monitoring and maintenance seems to be key fact for well functioning small WWTPs
- Resources-oriented sanitation solutions facilitates well functioning of systems

Contact

Dr Günter Langergraber

University of Natural Resources and Life Sciences, Vienna (BOKU University)
Department of Water, Atmosphere and Environment
Institute of Sanitary Engineering and Water Pollution Control

Muthgasse 18, A-1190 Vienna, Austria

Tel.: +43 (0)1 47654-81111

Email: guenter.langergraber@boku.ac.at