

Smart policies, strong utilities, sustainable services

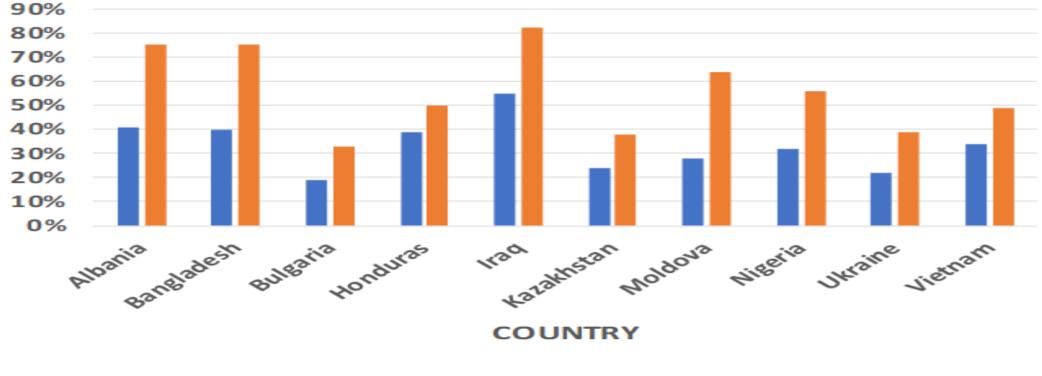
WEBINAR

THE RISING COST **OF INACTION** HOW THE ENERGY CRISIS IMPACTS THE WATER SERVICE SECTOR IN THE DANUBE REGION 2 March 2022, 13:30 - 14:45 (CET)

• Panama: The National Water Utility is the largest consumer of energy in the country.

 Philippines: The Manila Water Company serves over 6 million people and has never done a comprehensive energy audit.

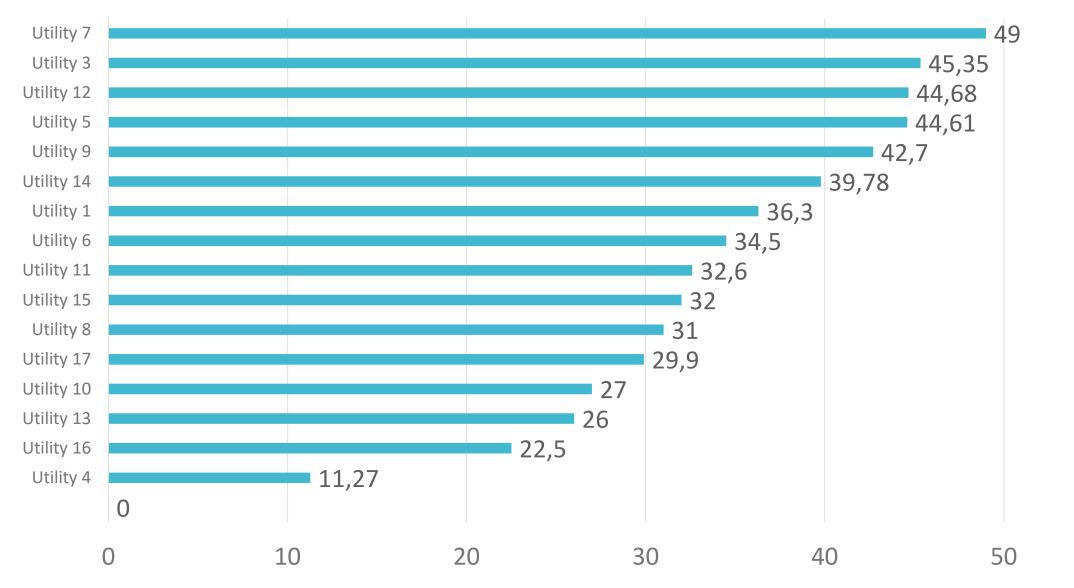
• Ethiopia: 30 percent of the energy for Addis Ababa is consumed by the water utility (AAWSA).



Status of energy efficiency in water utilities

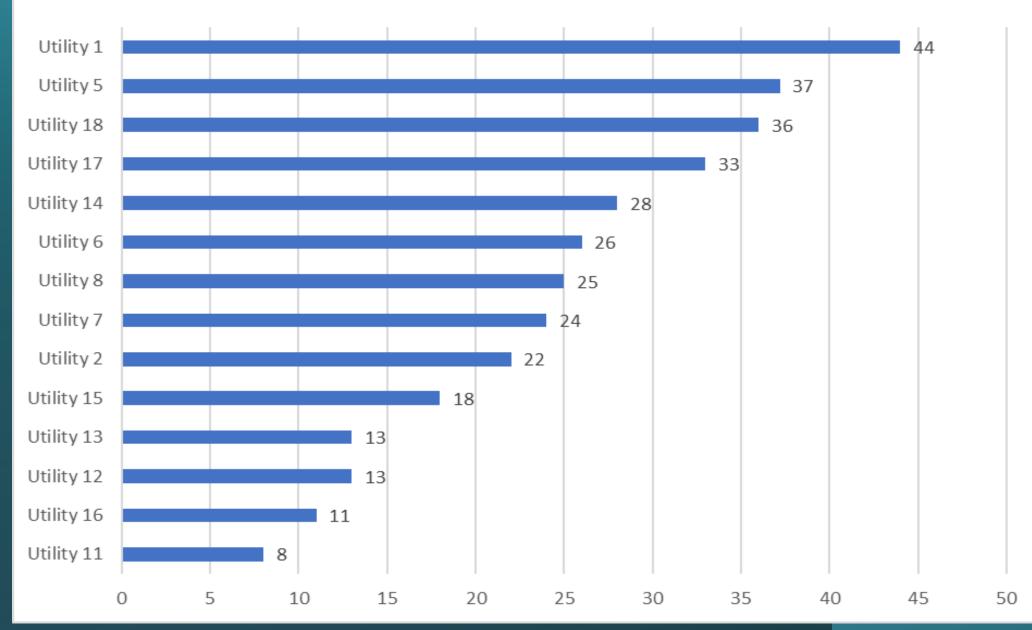
Estimating Energy Use

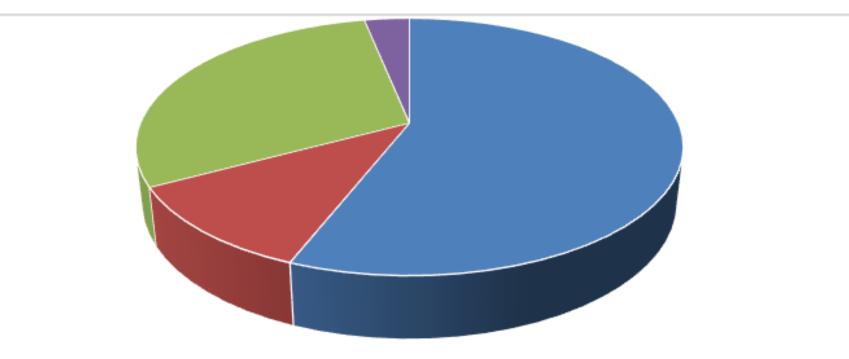
Electricity costs range from 33-82% of nonlabor operating costs.

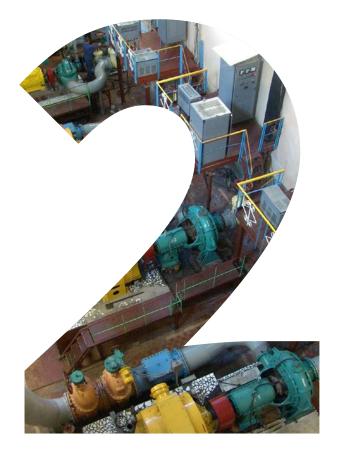

% of Total Operating Costs 6 % of Non-Labor Operating Costs

Data on Energy Efficiency

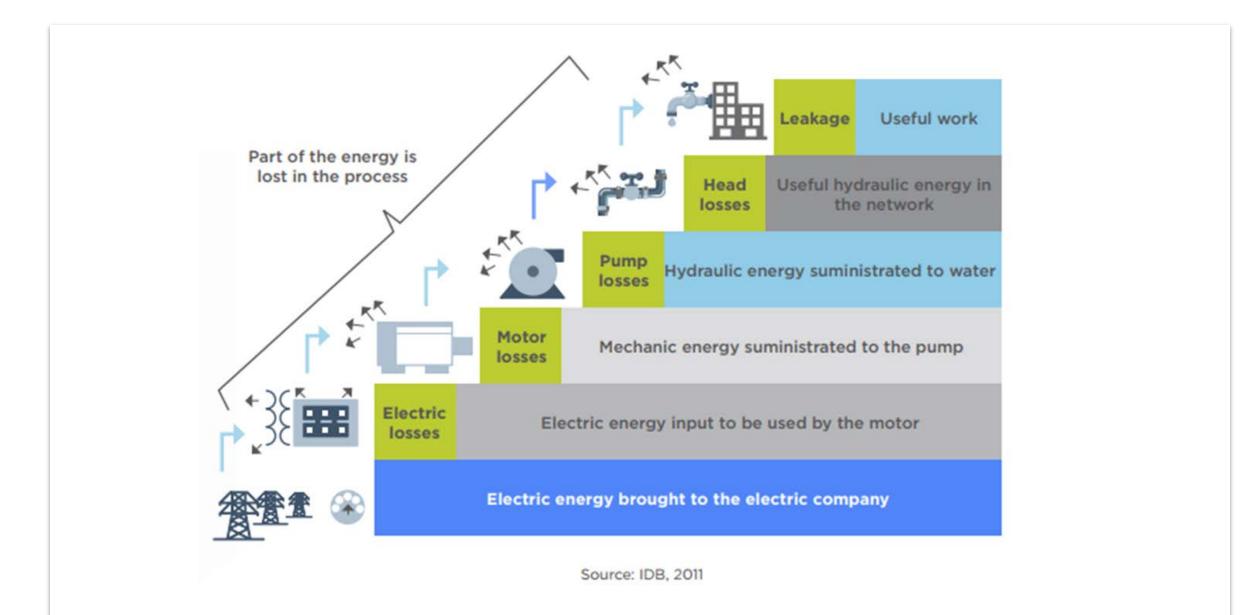
- Collected: November 2021
- 17 utilities in Ukraine
- Rising energy prices
- Old pumping systems



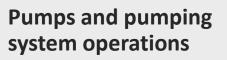

Non-Revenue Water (NRW), %


60

Average Age of Pumps (Years)



- Electricity Consumption Pumping, %
- Electricity Consumption (Fresh) Raw water treatment, %
- Electricity Consumption Wastewater Treatment, %
- Electricity Consumption Other, %



Energy efficiency measures

Energy Efficiency Measures

- Pump replacement
- Install variable frequency drives
- Power factor correction
- Optimize pumping system operation and maintenance

Water loss management technologies

- Leak reduction
- Pressure management

Modern technologies

 Implement supervisory control and data acquisition (SCADA) systems

00 00 00

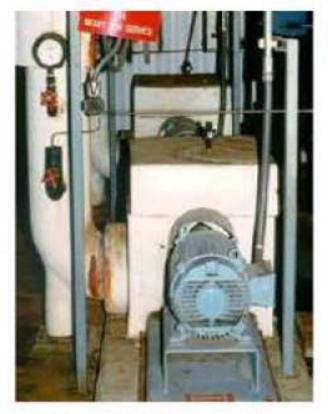
• Install smart pumps

Wastewater treatment

- Improve efficiency of anaerobic digestion etc.
- Use efficient activated sludge processes

• THP

Demand-side efficiency measures to reduce water consumption


Investments in energy efficiency typically have a simple payback between 2 months and 5 years.

THE SYSTEMS APPROACH

15 kW motor efficiency = 91%

Combined motor & pump efficiency = 59%

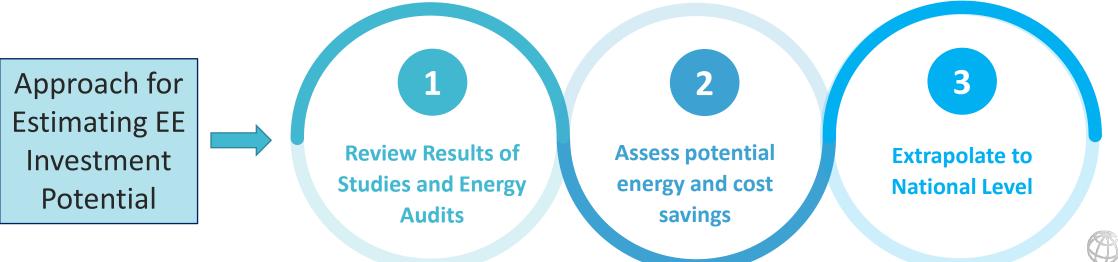
Pump efficiencies can vary a lot: From 0% to 85%, depending on where it operates on its curve

Energy Efficiency in the Water Sector

Electricity costs are the largest "controllable" operating costs for most Water Utilities: 30-80% of non-labor OPEX

Reductions of 20-50% possible, return on investments (1-5 years)

A low-cost or negative-cost measure for reducing GHG


The Water Sector is a high consumer of energy

Estimating EE Investment Potential

- Some funding has been provided for implementing EE projects as subcomponents in larger water infrastructure investment projects.
- While such funding has been limited, the results have demonstrated the enormous potential for projects with attractive paybacks.

Estimated EE Investment Potential in Selected Countries

Bulgaria			Ukraine					
Number of WSS Utilities and Electricity Consumption			Number of WSS Utilities and Electricity Consumption					
	Units	Value		Units	Estin	nates		
Number of WSS Utilities	#	51			Low	High		
Total Electricity Consumption	Million kWh	595	Number of WSS Utilities	#	2,5	93		
			Total Electricity Consumption	Million kWh	3,2	42		
No. of Utilities Assessed	#	6	No. of Utilities Providing Data #		1	7		
Electricity Consumption	Million kWh	187	Electricity Consumption Million kWh		1,0	71		
% of Total	%	31.4%	% of Total	%	33.0%			
Results for 6 utilities based on Preliminary Assessment			Results for 17 utilities based on Preliminary Assessment					
Average % Energy Savings	%	35%	Potential % Energy Savings	%	25%	35%		
Energy Savings	Million kWh	65	Energy Savings	Million kWh	268	375		
Electricity Price	USD/kWh	0.15	Average Electricity Price	USD/kWh	0.083	0.083		
Energy Cost	Million USD	28.1	Energy Cost	Million USD	88.9	88.9		
Estimated Energy Cost Reduction	Million USD	9.8	Estimated Energy Cost Reduction	USD	22.2	31.1		
Estimated Simple Payback	Years	5	Estimated Simple Payback	Years	5	5		
Investment Needed	Million USD	49.1	Investment Needed	Million USD	111.1	155.6		
Extrapolation to All Utilities			Extrapolation to All Utilities					
Average % Energy Savings	%	35%	Average % Energy Savings	%	25%	35%		
Estimated Energy Cost Reduction	Million USD	31.2	Estimated Energy Cost Reduction	Million USD	67.3	94.2		
Estimated Simple Payback	Years	5	Estimated Simple Payback	Years	5	5		
Investment Needed	Million USD	156	Investment Needed	Million USD	336	471		

Projected EE Investment Potential in ECA

INVESTMENT POTENTIAL FOR ENERGY EFFICIENCY IN WATER AND WASTEWATER UTILITIES IN ECA

Calculating Investment Potential		Units	Estimates		Source	
		Onits	Low	High	Source	
Α	World Electricity Consumption in 2019	TWh	25,027		IEA World Energy Statistics 2021	
В	ECA Electricity Consumption in 2019 (estimated)	TWh	TWh 1,604		IEA World Energy Statistics - Non-OECD Europe and Eurasia, 2021	
С	Electricity consumption in the Water Sector as % of total	%	% 4.0%		IEA Report on Water-Energy Nexus, 2010	
D	Electricity consumption in the Water Sector in ECA	TWh	TWh 64.2		Calculated (B x C)	
E	Electricity use in water and wastewater utilities (WWUs) as % of total	%	69.0%		IEA Report on Water-Energy Nexus, 2016	
F	Electricity use in ECA for WWUs	тwн	44.3		Calculated (D x E)	
G	Energy savings potential in WWUs	%	20%	35%	Based on energy audits conducted in several ECA countries	
н	Energy savings potential in WWUs	TWh	8.9	15.5	Calculated based on % savings (F x G)	
I	Typical electricity prices	\$/kWh	0.05	0.15	Based on energy audits conducted in several ECA countries	
J	Typical paybacks for private energy efficiency investments	Years	7 5		Based on energy audits and willingness of private sector to invest	
к	Potential investment needs	Billion USD	3.1	11.6	Calculated (H x I x J)	

The projected investment potential in ECA (Eastern Europe and Central Asia) is between USD 3.1 and 11.6 Billion

16

The investment paradox

Water utilities are energy inefficient

Investments in energy efficient have short payback periods = win-win investments

Utilities have limited cash flow and borrowing capacity to invest in energy efficiency

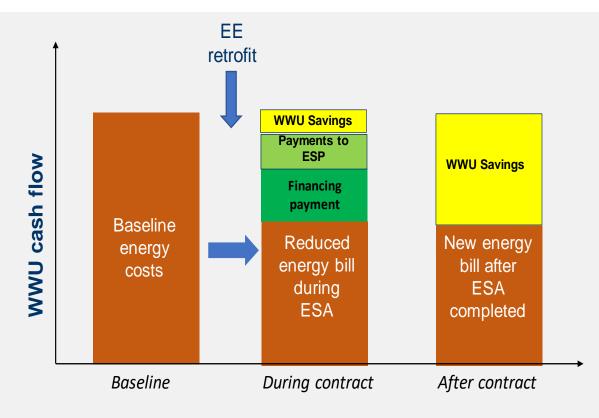
"Nothing" happens

What should we do?

Financing Mechanisms

There is a wide range of energy services business models and the performance contracting model can be attractive to urban utilities.

Energy Services Business Models


1. Engineering Services

2. Financial Services

3. Performance Contracting

4. Outsourced Energy Management

Performance Contracting Model

Mobilizing private sector financing

Uzbekistan: Pilot Case

Private sector: A major pump manufacturer has developed a €5.4 million program for the Samarkand water utility for reducing energy consumption by 45%.

ESCO Contract: The firm is ready to finance the investment with a 5-year ESCO-type contract.

Budget neutral: This arrangement is budget neutral to the water utility, as the energy savings achieved under the contract to repay the firm.

Idea: Mobilizing private sector financing

Large-Scale Investment Program in Energy Efficiency

Requirement: Cash flow neutral to the utility Requirement: Must solve the problem at scale

One investment lot: 10-40 large water utilities - clustered in one contract with one investor:

- attract world class expertise
- economies of scale
- private sector financing

Investment: USD 10-100 million per contract

Investment model: Design-Build-Finance-Operate-Transfer

Idea: Mobilizing private sector financing

Large-Scale Investment Program in Energy Efficiency

Proposed contract duration: 5-15 years

Payment terms: Energy <u>Performance Contract</u> Shared Savings model (ESCO model)

Technologies: Energy efficiency, Energy Management and NRW reduction

Energy Audits: Explore tendering without energy audits

The role of the World Bank: Potentially payment guarantees

Thank you

The World Bank Water GP Energy Efficiency Team

Kris Welsien, Team Leader kwelsien@worldbank.org

WORLD BANK GROUP

Water Global Practice